Пояснительная записка

Настоящая рабочая программа по предмету «Алгебра» для 7-9 классов составлена в соответствии с требованиями Федерального государственного образовательного стандарта основного общего образования (ФГОС ООО), на основе программы «Математика: 5 – 11 классы, А.Г.Мерзляк, В.Б. Полонский, М.С.Якир, Е.В.Буцко–М., Вентана-граф, 2017»

, рекомендованной в ООП ООО МБОУ «Гимназия №5» г. Королев.

 

Данная программа ориентирована на учебно-методический комплект: «Алгебра. 7 класс», «Алгебра. 8 класс», «Алгебра. 9 класс» авторов А.Г. Мерзляка, В.Б. Полонского, М.С. Якира. Программа рассчитана на 4 часа в неделю, всего 136 часов в год в 7 классе, на 4 часа в неделю, всего 136 часов в год в 8 классе, на 4 часа в неделю, всего 136 часов в год в 9 классе и соответствует федеральному государственному образовательному стандарту основного общего образования.

 

Учебный курс построен на основе Федерального государственного образовательного стандарта с учетом Концепции математического образования и ориентированна требования к результатам образования, содержащимся в Примерной основной образовательной программе основного общего образования. В нём также учитываются доминирующие идеи и положения программы развития и формирования универсальных учебных действий

для основного общего образования, которые обеспечивают формирование российской гражданской идентичности, коммуникативных качеств личности и способствуют формированию ключевой компетенции — умения учиться.

Курс алгебры 7—9 классов является базовым для математического образования и развития школьников. Алгебраические знания и умения необходимы для изучения геометрии в 7—9 классах, алгебры и математического анализа в 10—11 классах, а также изучения смежных дисциплин.

Практическая значимость школьного курса алгебры 7—9 классов состоит в том, что предметом его изучения являются количественные отношения и процессы реального мира, описанные математическими моделями. В современном обществе математическая подготовка необходима каждому человеку, так как математика присутствует во всех сферах человеческой деятельности. Одной из основных целей изучения алгебры является развитие мышления, прежде всего формирование абстрактного мышления. В процессе изучения алгебры формируется логическое и алгоритмическое мышление, а также такие качества мышления, как сила и гибкость, конструктивность и критичность. Для адаптации в современном информационном обществе важным фактором является формирование математического стиля мышления, включающего в себя индукцию и дедукцию, обобщение и конкретизацию, анализ и синтез, классификацию и систематизацию, абстрагирование и аналогию.

Обучение алгебре даёт возможность школьникам научиться планировать свою деятельность, критически оценивать её, принимать самостоятельные решения, отстаивать свои взгляды и убеждения. В процессе изучения алгебры школьники учатся излагать свои мысли ясно и исчерпывающе, приобретают навыки чёткого и грамотного выполнения математических записей, при этом использование математического языка позволяет развивать у учащихся грамотную устную и письменную речь.

 Знакомство с историей развития алгебры как науки формирует у учащихся представления об алгебре как части общечеловеческой культуры. Значительное внимание в изложении теоретического материала курса уделяется его мотивации, раскрытию сути основных понятий, идей, методов.

Обучение построено на базе теории развивающего обучения, что достигается особенностями изложения теоретического материала и упражнениями на сравнение, анализ, выделение главного, установление связей, классификацию, обобщение и систематизацию. Особо акцентируются содержательное раскрытие математических понятий, толкование сущности математических методов и области их применения, демонстрация возможностей применения теоретических знаний для решения разнообразных задач прикладного характера, например решения текстовых задач, денежных и процентных расчётов, умение пользоваться количественной информацией, представленной в различных формах, умение читать графики.

Осознание общего, существенного является основной базой для решения упражнений. Важно приводить детальные пояснения к решению типовых упражнений. Этим раскрывается суть метода, подхода, предлагается алгоритм или эвристическая схема решения упражнений определённого типа.

 

Общая характеристика курса

 

Содержание курса алгебры в 7—9 классах представлено в виде следующих содержательных разделов: «Алгебра», «Числовые множества», «Функции», «Элементы прикладной математики», «Алгебра в историческом развитии».

Содержание раздела «Алгебра» формирует знания о математическом языке, необходимые для решения математических задач, задач из смежных дисциплин, а также практических задач. Изучение материала способствует формированию у учащихся математического аппарата решения задач с помощью уравнений, систем уравнений и неравенств.

Материал данного раздела представлен в аспекте, способствующем формированию у учащихся умения пользоваться алгоритмами. Существенная роль при этом отводится развитию алгоритмического мышления — важной

составляющей интеллектуального развития человека.

Содержание раздела «Числовые множества» нацелено на математическое развитие учащихся, формирование у них умения точно, сжато и ясно излагать мысли в устной и письменной речи. Материал раздела развивает понятие о числе, которое связано с изучением действительных чисел.

Цель содержания раздела «Функции» — получение школьниками конкретных знаний о функции как важнейшей математической модели для описания и исследования процессов и явлений окружающего мира. Соответствующий материал способствует развитию воображения и творческих способностей учащихся, умения использовать различные языки математики (словесный, символический, графический).

Содержание раздела «Элементы прикладной математики» раскрывает прикладное и практическое значение математики в современном мире. Материал данного раздела способствует формированию умения представлять и

анализировать различную информацию, пониманию вероятностного характера реальных зависимостей.

Раздел «Алгебра в историческом развитии» предназначен для формирования представлений о математике как части человеческой культуры, для общего развития школьников, создания культурно-исторической среды обучения.

Личностные, метапредметные и предметные результаты

освоения содержания курса алгебры.

Изучение алгебры по данной программе способствует формированию у учащихся личностных, метапредметных и предметных результатов обучения, соответствующих требованиям Федерального государственного образовательного стандарта основного общего образования.

Личностные результаты:

1) воспитание российской гражданской идентичности:

патриотизма, уважения к Отечеству, осознание вклада отечественных учёных в развитие мировой науки;

2) ответственное отношение к учению, готовность и способность обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию;

3) осознанный выбор и построение дальнейшей индивидуальной траектории образования на базе ориентировки в мире профессий и профессиональных предпочтений с учётом устойчивых познавательных интересов, а также

на основе формирования уважительного отношения к труду, развитие опыта участия в социально значимом труде;

4) умение контролировать процесс и результат учебной и математической деятельности;

5) критичность мышления, инициатива, находчивость, активность при решении математических задач.

Метапредметные результаты:

1) умение самостоятельно определять цели своего обучения, ставить и формулировать для себя новые задачи в учёбе, развивать мотивы и интересы своей познавательной деятельности;

2) умение соотносить свои действия с планируемыми результатами, осуществлять контроль своей деятельности в процессе достижения результата, определять способы действий в рамках предложенных условий и требований, корректировать свои действия в соответствии с изменяющейся ситуацией;

3) умение определять понятия, создавать обобщения, устанавливать аналогии, классифицировать, самостоятельно выбирать основания и критерии для классификации;

4) умение устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и делать выводы;

5) развитие компетентности в области использования информационно-коммуникационных технологий;

6) первоначальные представления об идеях и о методах математики как об универсальном языке науки и техники, о средстве моделирования явлений и процессов;

7) умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;

8) умение находить в различных источниках информацию, необходимую для решения математических задач, и представлять её в понятной форме, принимать решение в условиях неполной или избыточной, точной или вероятностной информации;

9) умение понимать и использовать математические средства наглядности (графики, таблицы, схемы и др.) для иллюстрации, интерпретации, аргументации;

10) умение выдвигать гипотезы при решении задачи, понимать необходимость их проверки;

11) понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом.

Предметные результаты:

1) осознание значения математики для повседневной жизни человека;

2) представление о математической науке как сфере математической деятельности, об этапах её развития, о её значимости для развития цивилизации;

3) развитие умений работать с учебным математическим текстом (анализировать, извлекать необходимую информацию), точно и грамотно выражать свои мысли с применением математической терминологии и символики, проводить классификации, логические обоснования;

4) владение базовым понятийным аппаратом по основным разделам содержания;

5) систематические знания о функциях и их свойствах;

6) практически значимые математические умения и навыки, их применение к решению математических и нематематических задач, предполагающее умения:

• выполнять вычисления с действительными числами;

• решать уравнения, неравенства, системы уравнений

и неравенств;

• решать текстовые задачи арифметическим способом,

с помощью составления и решения уравнений, систем уравнений и неравенств;

• использовать алгебраический язык для описания предметов окружающего мира и создания соответствующих математических моделей;

• проводить практические расчёты: вычисления с процентами, вычисления с числовыми последовательностями, вычисления статистических характеристик,

выполнение приближённых вычислений;

• выполнять тождественные преобразования рациональных выражений;

• выполнять операции над множествами;

• исследовать функции и строить их графики;

• читать и использовать информацию, представленную в виде таблицы, диаграммы (столбчатой или круговой);

• решать простейшие комбинаторные задачи.

Место курса алгебры в учебном плане

В базисном учебном (образовательном) плане на изучение алгебры в 7—9 классах основной школы отведено 3 учебных часа в неделю в течение каждого года обучения, всего 315 часов. Учебное время может быть увеличено до 4 часов в неделю за счёт вариативной части базисного плана.

Планируемые результаты обучения

алгебре в 7—9 классах

Алгебраические выражения

Выпускник научится:

• оперировать понятиями «тождество», «тождественное преобразование», решать задачи, содержащие буквенные данные, работать с формулами;

• оперировать понятием «квадратный корень», применять его в вычислениях;

• выполнять преобразование выражений, содержащих степени с целыми показателями и квадратные корни;

• выполнять тождественные преобразования рациональных выражений на основе правил действий над многочленами и алгебраическими дробями;

• выполнять разложение многочленов на множители.

Выпускник получит возможность:

• выполнять многошаговые преобразования рациональных выражений, применяя широкий набор способов и приёмов;

• применять тождественные преобразования для решения задач из различных разделов курса.

Уравнения

Выпускник научится:

• решать основные виды рациональных уравнений с одной переменной, системы двух уравнений с двумя переменными;

• понимать уравнение как важнейшую математическую модель для описания и изучения разнообразных реальных ситуаций, решать текстовые задачи алгебраическим методом;

• применять графические представления для исследования уравнений, исследования и решения систем уравнений с двумя переменными.

Выпускник получит возможность:

• овладеть специальными приёмами решения уравнений и систем уравнений; уверенно применять аппарат уравнений для решения разнообразных задач из математики, смежных предметов, практики;

• применять графические представления для исследования уравнений, систем уравнений, содержащих буквенные коэффициенты.

Неравенства

Выпускник научится:

• понимать терминологию и символику, связанные с отношением неравенства, свойства числовых неравенств;

• решать линейные неравенства с одной переменной и их системы; решать квадратные неравенства с опорой на графические представления;

• применять аппарат неравенств для решения задач из различных разделов курса.

Выпускник получит возможность:

• освоить разнообразные приёмы доказательства неравенств; уверенно применять аппарат неравенств для решения разнообразных математических задач, задач из смежных предметов и практики;

• применять графические представления для исследования неравенств, систем неравенств, содержащих буквенные коэффициенты.

 

Числовые множества

Выпускник научится:

• понимать терминологию и символику, связанные с понятием множества, выполнять операции над множествами;

• использовать начальные представления о множестве действительных чисел.

Выпускник получит возможность:

• развивать представление о множествах;

• развивать представление о числе и числовых системах от натуральных до действительных чисел; о роли вычислений в практике;

• развить и углубить знания о десятичной записи действительных чисел (периодические и непериодические дроби).

 

Функции

Выпускник научится:

• понимать и использовать функциональные понятия, язык (термины, символические обозначения);

• строить графики элементарных функций, исследовать свойства числовых функций на основе изучения поведения их графиков;

• понимать функцию как важнейшую математическую модель для описания процессов и явлений окружающего мира, применять функциональный язык для описания и исследования зависимостей между физическими величинами;

• понимать и использовать язык последовательностей (термины, символические обозначения);

• применять формулы, связанные с арифметической и геометрической прогрессиями, и аппарат, сформированный при изучении других разделов курса, к решению задач, в том числе с контекстом из реальной жизни.

 

Выпускник получит возможность:

• проводить исследования, связанные с изучением свойств функций, в том числе с использованием компьютера; на основе графиков изученных функций строить более сложные графики (кусочно-заданные, с «выколотыми» точками и т. п.);

• использовать функциональные представления и свойства функций для решения математических задач из различных разделов курса;

• решать комбинированные задачи с применением формул n-го члена и суммы n первых членов арифметической и геометрической прогрессий, применяя при этом аппарат уравнений и неравенств;

• понимать арифметическую и геометрическую прогрессии как функции натурального аргумента; связывать арифметическую прогрессию с линейным ростом, геометрическую — с экспоненциальным ростом.

 

Элементы прикладной математики

Выпускник научится:

• использовать в ходе решения задач элементарные представления, связанные с приближёнными значениями величин;

• использовать простейшие способы представления и анализа статистических данных;

• находить относительную частоту и вероятность случайного события;

• решать комбинаторные задачи на нахождение числа объектов или комбинаций.

Выпускник получит возможность:

• понять, что числовые данные, которые используются для характеристики объектов окружающего мира, являются преимущественно приближёнными, что по записи приближённых значений, содержащихся в информационных источниках, можно судить о погрешности приближения;

• понять, что погрешность результата вычислений должна быть соизмерима с погрешностью исходных данных;

• приобрести первоначальный опыт организации сбора данных при проведении опроса общественного мнения, осуществлять их анализ, представлять результаты опроса в виде таблицы, диаграммы;

• приобрести опыт проведения случайных экспериментов, в том числе с помощью компьютерного моделирования, интерпретации их результатов;

• научиться некоторым специальным приёмам решения

комбинаторных задач.

 

Содержание курса математики.

Алгебраические выражения.

Выражение с переменными. Значение выражения с

переменными. Допустимые значения переменных. Тождество. Тождественные преобразования алгебраических выражений. Доказательство тождеств.

Степень с натуральным показателем и её свойства. Одночлены. Одночлен стандартного вида. Степень одночлена.

Многочлены. Многочлен стандартного вида. Степень многочлена. Сложение, вычитание и умножение многочленов.

Формулы сокращённого умножения: квадрат суммы и квадрат разности двух выражений, произведение разности и суммы двух выражений. Разложение многочлена на множители. Вынесение общего множителя за скобки. Метод группировки. Разность квадратов двух выражений. Сумма и разность кубов двух выражений. Квадратный трёхчлен. Корень квадратного трёхчлена. Свойства квадратного трёхчлена. Разложение квадратного трёхчлена на множители. Рациональные выражения. Целые выражения. Дробные

выражения. Рациональная дробь. Основное свойство рациональной дроби. Сложение, вычитание, умножение и деление рациональных дробей. Возведение рациональной дроби в степень. Тождественные преобразования рациональных

выражений. Степень с целым показателем и её свойства. Квадратные корни. Арифметический квадратный корень и его свойства. Тождественные преобразования выражений, содержащих квадратные корни.

Уравнения.

Уравнение с одной переменной. Корень уравнения. Равносильные уравнения. Свойства уравнений с одной переменной. Уравнение как математическая модель реальной ситуации. Линейное уравнение. Квадратное уравнение. Формула корней квадратного уравнения. Теорема Виета. Рациональные уравнения. Решение рациональных уравнений, сводящихся к линейным или к квадратным уравнениям. Решение текстовых задач с помощью рациональных уравнений. Уравнение с двумя переменными. График уравнения с двумя переменными. Линейное уравнение с двумя переменными и его график.

Системы уравнений с двумя переменными. Графический метод решения системы уравнений с двумя переменными. Решение систем уравнений методом подстановки и сложения. Система двух уравнений с двумя переменными

как модель реальной ситуации.

Неравенства

Числовые неравенства и их свойства. Сложение и умножение числовых неравенств. Оценивание значения выражения. Неравенство с одной переменной. Равносильные неравенства. Числовые промежутки. Линейные и квадратные неравенства с одной переменной. Системы неравенств с одной переменной.

Числовые множества

Множество и его элементы. Способы задания множеств. Равные множества. Пустое множество. Подмножество. Операции над множествами. Иллюстрация соотношений между множествами с помощью диаграмм Эйлера. Множества натуральных, целых, рациональных чисел. Рациональное число как дробь вида m n, где m 􀂏 Z, n 􀂏 N, и как бесконечная периодическая десятичная дробь. Представление об иррациональном числе. Множество действительных чисел. Представление действительного числа в виде бесконечной непериодической десятичной дроби. Сравнение действительных чисел. Связь между множествами N, Z, Q, R.

 

Функции

Числовые функции

Функциональные зависимости между величинами. Понятие функции. Функция как математическая модель реального процесса. Область определения и область значения функции. Способы задания функции. График функции.

Построение графиков функций с помощью преобразований фигур. Нули функции. Промежутки знакопостоянства функции. Промежутки возрастания и убывания функции. Линейная функция, обратная пропорциональность,

квадратичная функция, функция y = x, их свойства и графики.

Числовые последовательности

Понятие числовой последовательности. Конечные и бесконечные последовательности. Способы задания последовательности. Арифметическая и геометрическая прогрессии. Свойства членов арифметической и геометрической прогрессий. Формулы общего члена арифметической и геометрической прогрессий. Формулы суммы n первых членов арифметической и геометрической прогрессий. Сумма бесконечной геометрической прогрессии,

у которой |q| < 1. Представление бесконечной периодической десятичной дроби в виде обыкновенной дроби.

Элементы прикладной математики.

Математическое моделирование. Процентные расчёты. Формула сложных процентов. Приближённые вычисления. Абсолютная и относительная погрешности. Основные правила комбинаторики. Частота и вероятность случайного события. Классическое определение вероятности. Начальные сведения о статистике. Представление данных в виде таблиц, круговых и столбчатых диаграмм, графиков. Статистические характеристики совокупности данных: среднее значение, мода, размах, медиана выборки.

Алгебра в историческом развитии.

Зарождение алгебры, книга о восстановлении и противопоставлении Мухаммеда аль-Хорезми. История формирования математического языка. Как зародилась идея координат. Открытие иррациональности. Из истории возникновения формул для решения уравнений 3-й и 4-й степеней. История развития понятия функции. Как зародилась теория вероятностей. Числа Фибоначчи. Задача Л. Пизанского (Фибоначчи) о кроликах.

Л. Ф. Магницкий. П. Л. Чебышёв. Н. И. Лобачевский.

В. Я. Буняковский. А. Н. Колмогоров. Ф. Виет. П. Фер-

ма. Р. Декарт. Н. Тарталья. Д. Кардано. Н. Абель. Б. Па-

скаль. Л. Пизанский. К. Гаусс.

 

ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ С ОПРЕДЕЛЕНИЕМ ОСНОВНЫХ ВИДОВ УЧЕБНОЙ ДЕЯТЕЛЬНОСТИ ОБУЧАЮЩИХСЯ

 

Номер

параграфа

Содержание учебного
материала

Характеристика основных видов деятельности ученика
(на уровне учебных действий)

Глава 1. Линейное уравнение с одной переменной

17

Распознавать числовые выражения и выражения с переменными, линейные уравнения. Приводить примеры выражений с переменными, линейных уравнений. Составлять выражение с переменными по условию задачи. Выполнять преобразования выражений: приводить подобные слагаемые, раскрывать скобки. Находить значение выражения с переменными при заданных значениях переменных. Классифицировать алгебраические выражения. Описывать целые выражения.

Формулировать определение линейного уравнения. Решать линейное уравнение в общем виде. Интерпретировать уравнение как математическую модель реальной ситуации. Описывать схему решения текстовой задачи, применять её для решения задач

1

Введение в алгебру

3

2

Линейное уравнение с одной переменной

6

3

Решение задач с помощью уравнений

6

 

Повторение

и систематизация

учебного материала

1

 

Контрольная работа № 1 «Линейное уравнение с одной переменной»

1

Глава 2. Целые выражения

68

Формулировать:

определения: тождественно равных выражений, тождества, степени с натуральным показателем, одночлена, стандартного вида одночлена, коэффициента одночлена, степени одночлена, многочлена, степени многочлена;

свойства: степени с натуральным показателем, знака степени;

правила: доказательства тождеств, умножения одночлена на многочлен, умножения многочленов.

Доказывать свойства степени с натуральным показателем. Записывать и доказывать формулы: произведения суммы и разности двух выражений, разности квадратов двух выражений, квадрата суммы и квадрата разности двух выражений, суммы кубов и разности кубов двух выражений.

Вычислять значение выражений с переменными. Применять свойства степени для преобразования выражений. Выполнять умножение одночленов и возведение одночлена в степень. Приводить одночлен к стандартному виду. Записывать многочлен в стандартном виде, определять степень многочлена.  Преобразовывать произведение одночлена и многочлена; суммы, разности, произведения двух многочленов в многочлен. Выполнять разложение многочлена на множители способом вынесения общего множителя за скобки, способом группировки, по формулам сокращённого умножения и с применением нескольких способов. Использовать указанные преобразования в процессе решения уравнений, доказательства утверждений, решения текстовых задач

 

4

Тождественно равные выражения. Тождества

3

5

Степень с натуральным показателем

3

6

Свойства степени с натуральным показателем

4

7

Одночлены

3

8

Многочлены

2

9

Сложение и вычитание многочленов

3

 

Повторение

и систематизация

учебного материала

1

 

Контрольная работа № 2 «Одночлены. Многочлены. Сложение и вычитание многочленов».

1

10

Умножение одночлена на многочлен

5

11

Умножение многочлена на многочлен

5

12

Разложение многочленов на множители. Вынесение общего множителя за скобки

4

13

Разложение многочленов на множители. Метод группировки

4

 

Повторение

и систематизация

учебного материала

1

 

Контрольная работа № 3 «Умножение одночлена на многочлен. Умножение многочлена на многочлен. Разложение многочленов на множители».

1

14

Произведение разности и суммы двух выражений

4

15

Разность квадратов двух выражений

4

16

Квадрат суммы и квадрат разности двух выражений

4

17

Преобразование многочлена в квадрат суммы или разности двух выражений

4

 

Повторение

и систематизация

учебного материала

1

 

Контрольная работа № 4 «Формулы сокращенного умножения»

1

18

Сумма и разность кубов двух выражений

2

19

Применение различных способов разложения многочлена на множители

5

 

Повторение и систематизация

учебного материала

2

 

Контрольная работа № 5 «Сумма и разность кубов двух выражений. Применение различных способов разложения многочлена на множители»

1

Глава 3. Функции

18

Приводить примеры зависимостей между величинами. Различать среди зависимостей функциональные зависимости.

Описывать понятия: зависимой и независимой переменных, функции, аргумента функции; способы задания функции. Формулировать определения: области определения функции, области значений функции, графика функции, линейной функции, прямой пропорциональности.

Вычислять значение функции по заданному значению аргумента. Составлять таблицы значений функции. Строить график функции, заданной таблично. По графику функции, являющейся моделью реального процесса, определять характеристики этого процесса. Строить график линейной функции и прямой пропорциональности. Описывать свойства этих функций

20

Связи между величинами. Функция

3

21

Способы задания функции

3

22

График функции

3

23

Линейная функция, её график и свойства

6

 

Повторение и систематизация

учебного материала

2

 

Контрольная работа № 6 «Функции»

1

Глава 4. Системы линейных уравнений

с двумя переменными

25

Приводить примеры: уравнения с двумя переменными; линейного уравнения с двумя переменными; системы двух линейных уравнений с двумя переменными; реальных процессов, для которых уравнение с двумя переменными или система уравнений с двумя переменными являются математическими моделями.

Определять, является ли пара чисел решением данного уравнения с двумя переменными.

Формулировать:

определения: решения уравнения с двумя переменными; что значит решить уравнение с двумя переменными; графика уравнения с двумя переменными; линейного уравнения с двумя переменными; решения системы уравнений с двумя переменными;

свойства уравнений с двумя переменными.

Описывать: свойства графика линейного уравнения в зависимости от значений коэффициентов, графический метод решения системы двух уравнений с двумя переменными, метод подстановки и метод сложения для решения системы двух линейных уравнений с двумя переменными.

Строить график линейного уравнения с двумя переменными. Решать системы двух линейных уравнений с двумя переменными.

Решать текстовые задачи, в которых система двух линейных уравнений с двумя переменными является математической моделью реального процесса, и интерпретировать результат решения системы

24

Уравнения с двумя переменными

3

25

Линейное уравнение с двумя переменными и его график

3

26

Системы уравнений с двумя переменными. Графический метод решения системы двух линейных уравнений с двумя переменными

3

27

Решение систем линейных уравнений методом подстановки

4

28

Решение систем линейных уравнений методом сложения

5

29

Решение задач с помощью систем линейных уравнений

5

 

Повторение и систематизация

учебного материала

1

 

Контрольная работа № 7 «Системы линейных уравнений с двумя переменными»

1

Повторение и систематизация учебного материала

8

 

Упражнения для повторения курса 7 класса

6

Итоговая контрольная работа

2

Итого:

136

 

 

Учебно-методический комплект

1. Алгебра: 7 класс: учебник для учащихся общеобразовательных учреждений / А. Г. Мерзляк, В. Б. Полонский, М. С. Якир. — М.: Вентана-Граф.

2. Алгебра: 7 класс: дидактические материалы: пособие для учащихся общеобразовательных учреждений / А. Г. Мерзляк, В. Б. Полонский, Е. М. Рабинович, М. С. Якир. — М.: Вентана-Граф.

3. Алгебра: 7 класс: методическое пособие / Е. В. Буцко,

А. Г. Мерзляк, В. Б. Полонский, М. С. Якир. — М.: Вентана-Граф.